

 Come, see, create

1 Vivids and Organelles
Public Specification

December 2023 by Hansjoerg Petschko

 1 Vivids and Organelles

 2

Contents

1 Release History and Notes ... 4

2 Introduction .. 5

3 Motivation ... 6

3.1 A simple control loop: Thermostat .. 6

3.2 Component Sharing and Auto Detection .. 8

4 Vivids and Organelles ...10

4.1 Biological cells and organelles ..10

4.2 The Vivid...11

4.3 Core organelles ...11

4.4 Pheno organelles ..12

5 Taxonomy ..13

5.1 In Biology ...13

5.2 In the ViViVerse ..13

5.2.1 The Organelle Class ...14

5.2.2 The Family ...14

5.2.3 The Species ...14

5.2.4 The Identity ...14

5.2.5 The Holotaxon ..15

6 The life of a simple Vivid ..16

6.1 Basic source code ...16

6.2 Basic configuration...16

7 More about pheno organelles ...19

7.1 Application development ...19

7.2 Implementing pheno organelles ...20

7.3 Deploying pheno organelles ..21

8 Appendix A: The Thermostat example ..22

8.1 Introduction to the vvv_biotope host program ..22

8.1.1 Faces and Visages ..22

8.1.2 Loading configurations and defining the document window layout ...23

8.1.3 The Demiurg Face ..24

8.1.4 The Agora Face ...25

8.1.5 The Chaperone Face ..25

8.2 The integrated Thermostat version ...26

8.3 Control loop and HMI separated ..26

8.4 Cloud computing ..27

 1 Vivids and Organelles

 3

8.5 The IoT version ..28

8.6 The augmented version ...29

8.7 Editing DNAs ...30

8.8 More Ideas: multiple HMIs, MQTT and more ...30

9 Appendix B: Linux ..31

9.1 ncurses ..31

9.2 Other visual frameworks ...31

10 Appendix C: The ViViVerse dictionary...32

11 Appendix D: C++ Class diagram..34

 1 Vivids and Organelles

 4

1 Release History and Notes

November 2014: First draft, still combined with the explanation of symbiosis in the VVV

December 2014: Separation from the symbiosis explanations

January 2015: First official version

January 2018: Fully updated version

May 2021: Class diagram added

October 2022: Improved ViViVerse diagrams

August 2023: More explanation about faces, configuration editing and Linux added

December 2023: Dictionary added

 1 Vivids and Organelles

 5

2 Introduction

Biological life forms, with their inherent mission to survive within the real, physical world, are forced to interact with

the reality surrounding them. With the externally imposed purpose of the applications based on the automation

software platform which constitutes the ViViVerse (VVV) being to sense, analyse and finally alter the real, physical

world, the VVV finds itself in practical neighbourhood of biological life. The flexibility and adaptability required of

both, life and technique, has led to similar solutions: small units which either operate standalone to a great extent,

or which cooperate within a larger context. In the VVV this similarity is expressed by borrowing existing terminology

from biology, but also by building new terminology based on existing one.

This document introduces the basic terms used in the VVV and tries to motivate their usage.

It is important to note, that, even though there are apparent similarities, the VVV does not pretend to be a bionic

project. Analogies are not wilfully enforced - neither on a technical level nor in naming. Whenever another analogy

seems more striking, it is used.

Say hello to the ViViVerse!

 1 Vivids and Organelles

 6

3 Motivation

3.1 A simple control loop: Thermostat

In this chapter, we want to introduce you to some basics of automation software and show you why the ViViVerse is

as it is. For this purpose, we use a rather simple example of an automation application, the thermostat: the

temperature of a system shall be regulated towards a set-temperature. The system can either be a room, a

refrigerator, or a furnace.

Figure 1 The principle of a thermostat as an example for a simple control loop: sense, analyse, act.

In Figure 1 we see the principle of a thermostat laid out as a control loop. It consists of the following steps:

 Sense: measure the temperature

 Analyse: determine a control value from the is- and the set-temperature

 Act: control a heating/cooling element using the control value

It is called a control loop, because after the last step, the procedure starts all over again.

How could this control loop be implemented in software? An initial solution could look like this:

initialise temperature sensor

initialise heating/cooling device

while (true)

 read temperature

 calculate difference to set temperature

 determine control value

 write control value

end while

Code example 1 A minimum control loop implementation

Getting the current temperature, determining the difference from the set-temperature and the best control value,

and controlling the heating/cooling element is implemented directly in one while true-loop.

While this solution will surely work, is easy to program and understand, it also has some disadvantages – mainly its

lack of flexibility. If e.g., the temperature sensor changes, the software needs to be reprogrammed. What we want,

is a way to change the components of the control loop at configuration time or even at runtime.

To overcome this problem, one would typically employ two familiar patterns: interfaces and factories.

 1 Vivids and Organelles

 7

An interface is an abstraction of the functionality which shall be provided by an object. In the physical world, it may

be compared to a connector.

Figure 2 Software interfaces are comparable to connectors in the real world.

Like the layout of the connector is bound to a certain functionality but does not compellingly infer what is behind

the jack/plug, an interface serves a clearly defined purpose without determining the way the functionality is

implemented. And it is exactly this property that gives us the flexibility we were looking for: instead of implementing

and using functionality directly within the control loop, we separate the two by putting an interface between the

usage and the implementation. This enables us to create and ‘plug in’ the object which provides the functionality

defined by the interface (also called ‘implements the interface’) before the control loop is started.

The component responsible for the creation of the component is called factory. Which component it creates for a

certain purpose, can be determined by making it read from a configuration or by detecting attached hardware.

Care must be taken to define the interfaces in a sufficiently generic way, without aiming too much at the components

(e.g. sensors) in your initial setup.

Now let us see, which interfaces would be needed to make the Thermostat work?

We need

 an interface to the component which connects to the temperature sensor

 an interface to the algorithm which determines the temperature difference and control value

 an interface to the component which connects to the heating/cooling element

If the application shall get a user interface as well, we may need to add a fourth interface via which the HMI can turn

on and off the temperature control.

 an interface to the control loop itself for enabling/disabling it

Now the control software might look like this:

thermometer = factory.create(“TemperatureSensor”)

thermo_algo = factory.create(“ThermoDesign”)

thermo_ctrl = factory.create(“ThermoController”)

while (true)

 thermometer.read_temperature

 thermo_algo.determine_temperature_control_value

 thermo_ctrl.write_control_value

end while

Code example 2 The control loop using a factory and interfaces (using pseudo-object-oriented programming style).

 1 Vivids and Organelles

 8

There are three things to notice here:

First: While an interface to the control value computation algorithm seems to be an overkill in this example, think of

a requirement for a clever algorithm which finds the optimal way to control the temperature with a minimum of

energy. You may replace your initial, simple try once a better algorithm has been developed.

Second: Because the control loop itself also provides an interface (see the last point above) it should also be seen as

a separate component: the ‘control application’ component. This has the very interesting consequence that the

actual control application is ‘demoted’ to a component rather than being a ‘program’ in its own right.

Figure 3 The principle of the Thermostat with the control application component added as a separate component (see Figure 1).

And last: This change in rank leads us to an interesting question: who makes the factory create the control application

component?

We shall answer this question below.

3.2 Component Sharing and Auto Detection

The factory approach introduced in the previous chapter has its limitations though: imagine we want to add a user

interface without changing the existing software. The user shall be able to see the current temperature, see and

change the set-temperature and turn the thermostat on and off altogether. To do this, the HMI component needs

to use the same components already used by the control loop. It can therefore not create them but must search for

already existing ones.

With hardware attached (it’s all about real world automation here!), there comes another requirement: software

components which connect to hardware (aka things) shall be created automatically when the presence of the

hardware is detected, and they shall be removed automatically when the connection to the hardware is broken.

In addition to the configuration time flexibility requirement, the components in the VVV shall also be able to share

the functionality they are using with others without knowing about them and to use components which have been

detected at runtime rather than been created from configuration. Also, we want to be able to add functionality

without changing the software. This added functionality may want to use components already in use by others.

Example for sharing: logger or HMI using the measured temperature from the sensor component already used in the

control loop. How does the logger get the same object as used in the control loop? We cannot let the factory create

it twice.

Example for runtime detection: hot swapping the temperature sensor

 1 Vivids and Organelles

 9

The solution: components do not request the factory to create other components but query a marketplace for

existing components, which registered at the marketplace upon their creation. These components have been

created by the factory from configuration, on request by other components or upon detection.

Thus, the control software is split into two sections: the factory part and the actual control part.

while (component_name = configuration.read)

 factory.create(component_name)

end while

thermometer = market_place.find(“TemperatureSensor”)

thermo_algo = market_place.find(“ThermoDesign”)

thermo_ctrl = market_place.find(“ThermoController”)

while (true)

 thermometer.read_temperature

 thermo_algo.determine_temperature_control_value

 thermo_ctrl.write_control_value

end while

Code example 3 The control loop using a factory, a marketplace, and interfaces.

This final approach is the one used by the ViViVerse. In addition, the ViViVerse allows queries to be performed in

remote marketplaces and components to be used transparently across process and machine boundaries, by this

enabling IoT and cloud scenarios.

After having shown – compellingly - the reasons for its architectural design, we will now introduce you to some more

transcending aspects of the ViViVerse, but also its real implementation.

 1 Vivids and Organelles

 10

4 Vivids and Organelles

4.1 Biological cells and organelles

The cells of all living organisms on earth have a very similar base structure. In fact, they are so similar, one could state

that they all stem from a single cell.

Figure 4 A biological cell and its main components (source: Wikipedia).

Some of the main delimited components of the cell are called organelles.

In addition to the organelles present in almost all cells, like ribosomes or mitochondria, cells can also have additional

organelles which differentiate them and provide them with the capabilities necessary to survive in various

environments or ‘function’ in a larger context.

The biological model organism in the VVV world is the Euglena Gracilis. As additional organelles, it possesses a

flagellum which it uses as propeller and an eyespot for the detection of light, which it needs, because its metabolism

is based on photosynthesis. It lends its shape to the graphical representation of a Vivid.

Figure 5 Euglena Gracilis: structure, microscopic picture, and graphical representation of a Vivid (source: Wikipedia).

http://en.wikipedia.org/wiki/Organelles
http://en.wikipedia.org/wiki/Euglena_gracilis
http://en.wikipedia.org/wiki/Organelles

 1 Vivids and Organelles

 11

4.2 The Vivid

Vivids are the smallest operational units within the VVV. Initially, a Vivid can be compared to a basic cell: it cannot

do a lot. But together with its basic organelles and their capability to synthesise and organise additional organelles,

it becomes the core building block of the VVV.

Figure 6 A Vivid and its main components

Figure 6 shows a Vivid and its organelles. They will be explained in more detail in the following sections.

Like one biological cell can either be a life form in its own right, or be part of a larger organism, one Vivid can either

constitute an entire automation application or only contain partial functionality. It is the same mechanism that

enables this separation that also makes it possible to combine full application Vivids to meta-applications.

Since the VVV is implemented in C++, which is an object-oriented programming language, a Vivid and the organelles

it contains, are represented by software objects. The creation of these software objects is called synthesis in the VVV.

The deletion of such an object is called dissolution.

4.3 Core organelles

Each Vivid has three static (meaning that they are always there) organelles. They are called core organelles.

Agora
This is the organelle registry or marketplace of the Vivid. It is the place where the
organelles register, can find each other, and then start symbiosis, hence its name.

Chaperone
This is the defender of the Vivid. It is responsible for the authentication of other Vivids and
their organelles and for the authorisation of symbiosis actions.

Demiurg
This is the factory of the Vivid. It creates (synthesises) and organises the dynamic
organelles which define the actual nature of the Vivid.

 1 Vivids and Organelles

 12

In addition to the three static organelles, a vivid can also have any number of connections to other Vivids. These

connections are effected by dendrons.

Dendron
Dendrons use bridges and the Whisper protocol to connect vivids, by this enabling
symbioses between organelles in separate Vivids. The dendrons are managed by the
Chaperone. The dendrons between two Vivids meet at a Synapse.

4.4 Pheno organelles

The dynamic or additional organelles of the Vivid are called pheno organelles because they define the appearance,

behaviour, and capabilities of the Vivid towards the outside world. The VVV knows 5 pheno organelle classes:

Bridge
The communication resources like socket, serial port, CAN bus.

Rebus
Sensors, actuators, and other things (like the computer object).

Fantasma
This class comprises algorithms. Anything that should be replaceable via configuration or
be accessible remotely but does not belong to any of the other classes.

Ego
The primary application algorithms or application know how.

Visage
This class comprises the HMI components or bioware drivers.

The Demiurg synthesises the pheno organelles when the Vivid itself is synthesised, based on a configuration file

which could be regarded as the DNA of the VVV. Pheno organelles can also be synthesised or dissolved during

runtime, based on runtime needs and circumstances.

 1 Vivids and Organelles

 13

5 Taxonomy

Taxonomy is the science of classifying items. The art behind it is to create a set of reasonable criteria which allows

an object to be assigned to a category and by this be found more easily in the Agora.

Each taxonomic scheme knows several levels of specialisation, called ranks. The name of the category in a specific

rank is called taxon.

5.1 In Biology

Because of the huge diversity of life forms, biology knows a lot of ranks.

Figure 7 The 9 taxonomic ranks in biology in ascending top-down specialisation order.

For example, the full classification of the domestic cat is:

 Animalia/Chordata/Mammalia/Carnivora/Felidae/Felis/Felis catus

Here, one taxon is given for each rank starting with the kingdom.

5.2 In the ViViVerse

The VVV only knows 4 ranks, which however should not be seen as a limitation of the diversity within her. These ranks

are (in ascending specialisation order): class, family, species, and identity.

Figure 8 The 4 taxonomic ranks in the VVV, in ascending top-down specialisation order.

http://en.wikipedia.org/wiki/Family_(biology)
http://en.wikipedia.org/wiki/Cat

 1 Vivids and Organelles

 14

5.2.1 The Organelle Class

The organelle class rank (or short: class rank) is the collection of the core organelle and the pheno organelle classes

plus the Vivid as meta organelle.

Organelle classes are denoted in C++ by the enumeration value organelle_class.

enum class organelle_class : i32

{

 organelle_class::none = -1, // undefined

 organelle_class::vivid, // vivid (meta organelle)

 organelle_class::agora, // agora (core organelle)

 organelle_class::chaperone, // chaperone (core organelle)

 organelle_class::demiurg, // demiurg (core organelle)

 organelle_class::dendron, // dendron (core organelle)

 organelle_class::bridge, // bridge class (pheno organelle)

 organelle_class::rebus, // rebus class (pheno organelle)

 organelle_class::fanta, // fanta class (pheno organelle)

 organelle_class::ego, // ego class (pheno organelle)

 organelle_class::visage // visage class (pheno organelle)

}; // enum organelle_class

All non pheno classes – like Chaperone or Demiurg - do actually have only one class member having the class name

as member name.

5.2.2 The Family

Families are contextually associated sets of services provided by one organelle and used by another organelle or

generally any other software object. This rank definitely is the most important in the VVV taxonomy. Families are

denoted by their name string and a guid. A guid is a very large number which is guaranteed to be unique.

This rank shows a noticeable difference from its biological counterpart, in that family membership is not exclusive:

because the family defines the purpose of an organelle, multipurpose organelles automatically belong to multiple

families (and thus, by the way, may also belong to multiple classes, which is rather rare).

Because it has such an important role, it has got its own icon:

Figure 9 The Family icon.

5.2.3 The Species

Species denote the different implementations of the services provided by a family. Sensors of different manu-

facturers, which all provide the same type of measurements, belong to different species. Species are denoted by

their name string.

5.2.4 The Identity

The identity identifies an individual. An identity comprises a name string, an organelle id, which is a number unique

within the vivid, the guid of the vivid and the guids of the Synapses (the connections between the dendrons) through

which they were registered in the Agora. This last collection of values is only relevant for ectoviv symbiosis, the

collaboration of organelles across vivid boundaries, which is described in the document 2 Symbiosis in the

ViViVerse. The Synapses describe the topology of the ViViVerse, but their use has not been completely elaborated

until now.

 1 Vivids and Organelles

 15

Identities are called persistent if they keep their names between incarnations of the same vivid and can thus be fully

referenced in the configurations.

5.2.5 The Holotaxon

Since there exists no term for the full taxonomic definition of a specimen in biology (as given for the cat), the VVV

has introduced the word holotaxon. It consists of all four ranks.

The holotaxon of a temperature sensor of type ‘Top’ made by manufacturer ‘ManuX’ is:

organelle_class::rebus/TemperatureSensor/ManuXTop/ManuXOnCom2

For clarity, the string representation of the class enumeration value is used, and only the name part of the identity is

shown.

Holotaxa can also be partially defined by omitting rank taxa completely or using wildcards in strings. This feature is

used in donor queries as is explained in the document about the ViViVersal symbiosis.

 1 Vivids and Organelles

 16

6 The life of a simple Vivid

6.1 Basic source code

The ‘life’ of a Vivid starts when the member function synthesise of the associated software class vivid is called. A

configuration file, describing amongst others the pheno organelles to be synthesised, must be passed to this

function. The default filename extension of VVV configuration files is vvvdna. The reason for this name is the

transition from ‘word’ to ‘flesh’ that happens during the synthesis. The life of the Vivid ends when the function

dissolve is called. During the time between the calls to synthesise and dissolve, the Vivid leads a completely

independent life, performing the tasks it was meant to. The simplest program hosting a Vivid could therefore look

like this:

i32 wmain(

 i32 argc,

 wchar* argv[])

{

 vivid v; // the vivid which performs the automation task

 v.synthesise(argc > 1 ? argv[1] : nullptr); // start the task

 getwchar(); // let the task run until the user presses a key

 v.dissolve(); // finish the task

 return 0;

}

Code example 4 The simplest host program being able to run any automation application

Depending on the pheno organelles, which are synthesised during the synthesis of the Vivid (or thereafter), this tiny

piece of software can do virtually anything. As long as there are no resource collisions (such as the attempted usage

of a serial port already in use), any number of Vivids could be synthesised in this program by defining more objects

of the class vivid.

6.2 Basic configuration

As an example for a simple automation application, we will use the Thermostat application introduced earlier in this

document. How would the ViViVerse implementation look? Here is the organelle diagram, which shows the

necessary components and their relationships:

Figure 10 The ViViVerse organelle diagram for the Thermostat application.

The labels on the connecting lines denote the names of the symbioses and the required families in parenthesis. The

small arrow on one end indicates the donor (the organelle which provides the functionality); the acceptor sits on the

other end. In many cases (like the symbiosis between the Thermostat Ego and the TemperatureModel Fantasma),

 1 Vivids and Organelles

 17

the name of the symbiosis is equal to the family name. This is not possible if symbioses to two organelles of the same

family are needed - for example, if two temperatures must be measured.

The DNA files, which contain the configuration, are written using a reduced version of XML. The DNA file for the

Thermostat Vivid could look like this:

<?xml version="1.0" encoding="utf-8"?>

<VVV_Vivid>

 <Name>ThermostatComplete</Name>

 <Demiurg>

 <OrganelleModules>

 <Module>vvv_thermostat.vvvorg</Module>

 </OrganelleModules>

 <Synthesis>

 <SimTemperature>

 <Temperature>293.150000000000</Temperature>

 <DeliveryInterval>1000</DeliveryInterval>

 <DeliveryMode>2</DeliveryMode>

 </SimTemperature>

 <TemperatureModel>

 <SetTemperature>295.150000000000</SetTemperature>

 <DeadBandWidth>0.100000000000</DeadBandWidth>

 </TemperatureModel>

 <SimHotCold>

 <Environment Type="C">

 </Environment>

 <StartTemperature>293.150000000000</StartTemperature>

 <TemperatureChange>0.100000000000</TemperatureChange>

 <SetInterval>1000</SetInterval>

 <SetTemperature>true</SetTemperature>

 </SimHotCold>

 <Thermostat>

 <Environment Type="C">

 </Environment>

 <ControlInterval>1000</ControlInterval>

 </Thermostat>

 <ThermostatW32 Id="ThermostatHMI">

 <AutoSynthesise>false</AutoSynthesise>

 <View>

 <BackgroundColour>0 0 0</BackgroundColour>

 <ForegroundColour>200 200 200</ForegroundColour>

 </View>

 </ThermostatW32>

 </Synthesis>

 </Demiurg>

</VVV_Vivid>

Code example 5 The configuration of the Thermostat Vivid with integrated HMI

As we already mentioned, the Demiurg is responsible for synthesising the pheno organelles. Before they can be

synthesised, the module vvv_thermostat.vvvorg which contains the necessary executable code must be loaded. In

the Synthesis section, five independent organelles (SimTemperature, TemperatureModel, SimHotCold, Thermostat,

ThermostatW32) are defined, using their species names.

Once synthesised, organelles which need functionality from other organelles, must find them. This is a two-step

procedure, which starts with a query against the Agora. The search criteria of this query only define the basic

requirements and are hardcoded, e.g., to get the is-temperature, the Ego needs a member of the TemperatureSensor

family. If more detailed filtering is necessary, the Environment entries can be used to define the symbioses between

the organelles. It is only necessary to write them into the configuration if special requirements need to be met. If, in

the above example, the configuration should only accept ‘real’ temperature sensors and no simulators, the following

entry into the environment section would exclude simulators for the Thermometer symbiosis, because they belong to

the Fantasma class.

 <Thermostat>

 <Environment>

 <Thermometer>

 <Holotaxon>

 <Class>Rebus</Class>

 </Holotaxon>

 </Thermometer>

 </Environment>

 <ControlInterval>1000</ControlInterval>

 1 Vivids and Organelles

 18

 </Thermostat>

Code example 6 Using restrictions for symbioses.

If these conditions are not fulfilled, the Ego will not find the donors it needs and will not work.

In the Thermostat example, this restriction does not make much sense, because the temperature sensor simulator is

synthesised explicitly and having a contradicting configuration would apparently break the application. However,

the VVV supports automatic detection of Things and when more than one sensor of the same family or when a sensor

of an unacceptable accuracy class is connected, these entries enable the selection of the correct symbionts.

For more information about the configuration and symbiosis between the organelles, please see the documents 6

The ViViVerse System Services.docx and 2 Symbiosis in the ViViVerse.docx from the ViViVerse Documentation

Suite.

The latter document also explains the feature which transforms a collection of independent Vivids into the

ViViVerse: ectoviv symbioses – symbioses between organelles within separate Vivids. This feature enables you for

example to quickly move the HMI into its own piece of hardware, without changing a single line of source code!

 1 Vivids and Organelles

 19

7 More about pheno organelles

7.1 Application development

There are several approaches to develop a real-world1 application using the ViViVerse. The pure approach uses a

general-purpose host program which has one or more vivids embedded. The application specific functionality

resides exclusively in the plug-ins loaded on vivid synthesis, while the host program knows nothing about the specific

purpose. But it is also possible to use a mixed approach, with having parts of the application specific functionality,

like the user interface, in the host program and letting the Vivid and its organelles only do the rest. Whatever way is

chosen, the functionality provided by the ViViVerse comes in form of the pheno organelles. While the Vivid and the

core organelles are merely infrastructure, it is the pheno organelles that do the real application job. They are even

used internally by the core organelles; for example, for authentication purposes the Chaperone uses the family

SecurityDatabase2.

The pheno organelles are packed into organelle modules, which are dynamically loadable libraries. These libraries

are assembled by referencing the organelles implemented in static libraries, the organelle collections. Organelle

collections for shared usage are organised in packages which serve a certain purpose, like fleet management, visual

quality control or others. From these packages and application specific organelle collections, the organelle module

for an application is built. It is also possible to split an application into any number of organelle modules for greater

flexibility, with the extreme case of having each organelle in its own module.

Figure 11 Assembling an organelle module, e.g., representing an application, from various organelle packages.

For more information about how organelle collections, packages and Organelle modules are organised, see the

document 5 The ViViVerse Folder Structure.

1 we use this word to distinguish this application from executable software
2 more precisely: the dendrons do so

 1 Vivids and Organelles

 20

7.2 Implementing pheno organelles

So, if you want to provide functionality, how can you do that in the VVV?

First you must decide whether it is necessary at all to implement an organelle. The flexibility they provide clearly

comes at the price of a higher implementation effort, so the benefit must outweigh the additional costs. There are

two use cases which justify the existence of organelles:

 Plugin flexibility. Your functionality shall be added to an existing application by just adding a software

module and an entry into the configuration, or you want to be able to replace one implementation by

another by changing the configuration.

 Remote accessibility. Your functionality shall be used by others from within separate vivids, which may live

in separate processes or on separate machines.

If none of these use cases applies, creating a class in a library will do the job. Take as an example an implementation

of the Fast Fourier Transform (FFT) algorithm. Unless you want to do some cloud- computing or want to be able to

replace the implementation ‘on the fly’, there is no need to put that into a Fantasma.

If you decide to implement an organelle, the amount of additional work depends on whether the organelle shall

provide its functionality as member of a family and if so, whether this family has already been founded, i.e., whether

the feature set of the family has already been defined or not.

Not all organelles need to provide functionality to other organelles to be useful. Imagine a logger, which collects

values from other organelles and writes them to a file. It uses the family feature sets of others but does itself only

work effective in the outside world, not within the VVV. It does not have to be controllable by others and therefore

does not have to be a member of any family.

If the organelle shall provide functionality to other software components within the VVV, this should be done via

family symbiosis. If you are lucky and the family has already been founded, just declare your organelle a member of

the family and provide the promised features. If the family does not yet exist, you can either take the easier way and

just make the family feature set equal to what your intended implementation must offer, or you can sit down and

think beyond your specific implementation. If you have a simple temperature sensor, the family could just provide

the temperature values. But you could also think about more complex cases and add reset and calibration commands

to the feature set. If that deters and demotivates you from founding families, there is mitigation: derived families.

Just start with the easiest, most basic family and add features later to families, which provide the base family feature

set plus the new stuff. The temperature sensor simulator from our example only indirectly belongs to the

TemperatureSensor family. Actually, it belongs to the family TemperatureSensor_Sim family, which provides all the

features of its base family but adds the ability to set the ’measured’ temperature from outside. Derivation is indicated

by an underscore in the family name.

Choosing the appropriate organelle class comes next. Bridges are quite easy to identify, as are Things. Any organelle

that represents a piece of hardware; sensors, actuators, but also the computer the software is running on, belong to

the latter class. Visages are a bit trickier: while it seems clear, that software, which writes to the screen and reacts on

mouse clicks or touch events, belongs to this class, where should we put a piece of software that reacts on a hardware

button being pushed or turns a siren on and off? Actually, the uncertainty here is an indication that we do not

differentiate clearly between the interaction concept and the interaction media, the reaction on a stimulus and the

kind of stimulus. For this reason, Visages are separated into two subcategories: models and views. Read more about

them in the document about HMIs. The rest are Fantasmas. Well, all the remaining organelles, except for those that

you reckon the centrepieces of your applications. In the Thermostat example, the TemperatureModel organelle,

although being indispensable, is just one component, while the Thermostat organelle basically represents the

application. It is the one that knows. Alas, here you have your Ego.

Organelles are implemented in static libraries. But how do you get them working?

 1 Vivids and Organelles

 21

7.3 Deploying pheno organelles

With one goal of the VVV providing functional flexibility, using a plug-in mechanism is the logical choice. And with

the organelles being the vehicles of the functionality, they will consequently be contained by the organelle modules.

On the Windows operating system, these modules are Dlls, on Linux dynamic library files with the .so file extension.

Creating an organelle module is straightforward: reference the organelle and link the static library. Here is (almost)

all that you must do:

// this array contains all organelles of the module

const organelle_info* organelle_module_implementation<>::organelle_infos_[] =

{

 &fanta_library::sim_temperature_org_info,

 &fanta_library::temperature_model_org_info,

 &fanta_library::sim_hot_cold_org_info,

 &ego_library::thermostat_org_info,

 &visage_library::thermostat_w32_org_info

}; // const organelle_info

Code example 7 The organelle map in the organelle module vvv_thermostat.vvvorg

As in the Thermostat example, all organelles of your application can go into one module, or you can (for larger

applications) move them into class modules (one for Bridges, one for Things etc.). In any case, you can add as many

modules as you want. Before it synthesises the organelles, the Demiurg loads the modules given in the respective

configuration section.

 1 Vivids and Organelles

 22

8 Appendix A: The Thermostat example

In this chapter, we take a closer look at various instances of the Thermostat example by describing their purpose,

configuration, and runtime behaviour. For a more detailed description of the configurations, please read the

commented versions in the configuration folder of your ViViVerse installation:

ViViVerse\software\runtime\configuration\education\vvv_thermostat\commented versions.

8.1 Introduction to the vvv_biotope host program

To explore the Thermostat example, we will use the desktop host program vvv_biotope. It is a multiple document

interface application, with each loaded configuration representing one document.

Note: the explanations and screenshots in this chapter relate to the Windows version. The Linux version is built on

the ncurses library and therefore slightly less spectacular.

Figure 12 The vvv_biotope host program showing the available configurations.

After starting the program, the available configurations are displayed (vvv_biotope looks for them in the con-

figuration folder of your VVV installation), clicking on one of them loads the configuration. When the document

(configuration) is loaded, a vivid is synthesised based on it. The vivid is dissolved when the document is closed.

8.1.1 Faces and Visages

The ViViVerse knows two types of user interfaces: while we have already introduced Visages – the end-user-HMIs,

let us now present Faces. To explain the difference between those two, let us take a look at the hardware world:

In control cabinets (see Figure 13), devices of different manufacturers are mounted and provide access to extended

or reduced functionality in manufacturer-specific style and format. The control room, on the other hand, provides

access to the whole functionality of the system in a coherent layout.

Faces are like the user interfaces of the devices in the control cabinet: they are directly attached to one organelle

and there is only one face per organelle (it can be opened more than once simultaneously though). Visages can be

 1 Vivids and Organelles

 23

connected to any number of organelles (also in other vivids), and the functionality they provide is rather related to

the entire system instead of single organelles – unless e.g., devices need to be configured. And with Visages being

organelles themselves, they may also have Faces.

Figure 13 A control cabinet and a control room demonstrate the relationship between Faces and Visages.

8.1.2 Loading configurations and defining the document window layout

When a configuration is loaded for the first time, initially the document window is empty, except for the sentence:

‘Click here to start layout’. When doing so, you switch into layout mode in which you can define the contents of the

document window.

Figure 14 The vvv_biotope host program after loading the vvv_thermostat_complete configuration and the document window after
switching into layout mode.

The window area can be split into any number of rectangles in which either Faces or Visages (together known as

‘aspects’) can be displayed.

Figure 15 The document window with the layout menu and after a second frame has been added. Clicking choose aspect displays the aspect
menu.

 1 Vivids and Organelles

 24

The layout of the faces and Visages in the document windows is stored in the same folder as the respective

configuration, e.g., vvv_thermostat_complete__Biotope.xml.

The layout mode can be finished/restarted with the respective button in the ribbon.

If you want to quickly see a Face provided by one of the organelles in the vivid, use the ‘Face’ ribbon item .

Now we explore the Faces of the three core organelles: Demiurg, Agora and Chaperone. These Faces do help a lot

when diagnosing and solving problems. Faces can have one or more ‘panes’ in which they can display information.

One Face can be opened more than once if the information of more than one pane shall be displayed at the same

time.

8.1.3 The Demiurg Face

The Demiurg Face displays all synthesised pheno organelles (i.e., the core organelles are not displayed) in the first

pane and all loaded organelle modules and available organelle species in the second pane. In fact, this is the only

way to find out, which organelles an organelle module contains.

Figure 16 The two panes of the Demiurg Face.

The organelle pane displays - for each synthesised organelle - its class, id, species, name, and state. The last column

shows the value of the first metabolic which the organelle provides. If there are no metabolics, the first gene is

displayed. Other metabolics and genes are displayed at the bottom of the pane when the organelle is selected. The

pane is dynamic, i.e., when organelles are synthesised or dissolved while it is open, this change is reflected.

 1 Vivids and Organelles

 25

8.1.4 The Agora Face

The Agora Face displays all registered donors in the first pane and all registered acceptors in the second pane.

Figure 17 The two panes of the Agora Face.

One organelle can be registered more than once if it belongs to more than one family. Organelles which have been

synthesised in another vivid but have also registered in this vivid through ectoviv donor queries or pheromones also

show the dendron through which they were registered. The acceptor pane displays the id (this is not the organelle

id), the name and the vivid which contains the acceptor. If the acceptor comes from another vivid, the dendron

through which this vivid is connected, is also displayed. The acceptors which do not belong to any vivid (zero guid),

are part of the vvv_biotope program.

8.1.5 The Chaperone Face

The Chaperone Face shows the other vivids to which the vivid is connected.

Figure 18 The Chaperone Face.

The Chaperone Face displays for each existing dendron the name of the vivid on the other side, the dendron state

and name and the organelle id of the bridge used by the dendron. This id can be used to identify the bridge in the

Demiurg Face.

 1 Vivids and Organelles

 26

8.2 The integrated Thermostat version

This is the simplest and most straightforward version: the configuration vvv_thermostat_complete.vvvdna contains

all the five organelles which are needed for the full thermostat functionality:

 The temperature sensor

 The temperature-model

 The heating/cooling element

 The thermostat control loop

 The user-interface

All these organelles are loaded into one single vivid on synthesis, which means that they all run on the same

computer.

Figure 19 The Demiurg Face and the document window of the vvv_thermostat_complete configuration showing the Visage of the
Thermostat application.

8.3 Control loop and HMI separated

When it is required to have the user-interface separated from the control loop, the HMI organelle must be moved

into a separate configuration and thus another vivid. This means that the symbioses between the HMI and the other

organelles must be performed through a dendron which uses a bridge for communication.

The active side in this setup is the HMI which connects to the control loop vivid. The control loop contains the

SocketBuilder organelle waiting for socket connection attempts. Any number of HMIs can be connected to the

control loop.

 1 Vivids and Organelles

 27

Figure 20 The document windows of the vvv_thermostat_ctrl (above) and vvv_thermostat_hmi (below) configurations. Each document
window represents one vivid.

Figure 20 shows various Faces and the Visage in the split thermostat application. In comparison with the integrated

setup, the HMI organelle is missing in the control vivid. It has been replaced by the SocketBuilder organelle and the

Socket bridge, which is only synthesised while a connection with the HMI vivid has been established. The HMI vivid

only has two organelles: the ThermostatW32 Visage and the Socket bridge. The Chaperone Faces in both document

windows show to which vivids the vivid is currently connected.

8.4 Cloud computing

Cloud computing, in this context, means the outsourcing of computing resources to other vivids. This, of course, only

makes sense, if the communication reliability and performance needs of your application are met. In the Thermostat

example, the temperature model is moved into its own vivid and the control loop vivid reaches out for it to find a

member of the TemperatureModel family. When found, the TemperatureModel (the species has the same name as the

family) fanta is registered in the Agora of the control loop vivid.

 1 Vivids and Organelles

 28

Figure 21 The Agora and Chaperone Faces of the ThermostatCtrlCloud vivid (above) and the TemperatureModel and Chaperone Faces of
the ThermostatCloud vivid (below) in the document windows of their respective configurations.

The Chaperone Face of the control-loop-vivid shows that the HMI is connected as well. However, it is not shown

here because it does not differ from the previous example.

8.5 The IoT version

The IoT version of the Thermostat example has the temperature sensor in its own vivid, by this decoupling the

location of the sensor device from the application device.

Figure 22 The Faces of the ThermostatCtrlIoT (above) and ThermostatIoT (below) vivids in the document windows of their respective
configurations.

As opposed to the cloud example, this time it is not the control loop vivid which connects to the ‘other’ vivid, but the

iot vivid, the reason for this being that the ‘mobile’ partner cannot be reached (because prevented by the carriers)

and therefore must connect to the application itself.

Again, it can be seen, that the HMI vivid is also connected to the control loop vivid. It is not shown here for the same

reasons as in the last chapter.

 1 Vivids and Organelles

 29

8.6 The augmented version

One of the shining features of the VVV is the ability to extend the functionality of applications without changing the

source code. Suppose you wanted to add logging of not only the room temperature but also the outside

temperature. As additional goody, you want to see these values in a browser. Which additional organelles would you

need?

 Another temperature sensor (mounted outside)

 A configurable logging facility

 A configurable web server

Figure 23 The Demiurg and Chaperone Faces of the ThermostatCtrlWithAndWWW vivid.

In the above figure, the socket with id 19 is the one opened by web server Visage, while the socket with id 32 is the

one opened by the socket builder when the HMI has connected.

Figure 24 The Face of the www_html organelle. In it, the metabolics and genes in the generated html pages can be configured.

The web server can be configured via its Face. It is even possible to create basic web pages directly, thus publishing

information within a minute without any programming knowhow.

Figure 25 The browser output of the web server Visage after connecting the browser to http://localhost:8080/.

http://localhost:8080/

 1 Vivids and Organelles

 30

Because the web server is very simple, it cannot do conversions. Therefore, the temperature is displayed in the

internal unit, which is Kelvin. Custom conversions and formatting, however, could be done from within the web page.

The logger collects configurable values (metabolics and genes) and writes them to a text file in the folder

runtime\quality\production.

8.7 Editing DNAs

The vvv_biotope host program can edit configurations in place and then directly use them. This way, it is also

possible to create a new configuration and immediately use and test it.

Figure 26 A vivid in Edit mode.

Based on XML schema definitions, the editor provides support for editing.

8.8 More Ideas: multiple HMIs, MQTT and more

Instead of the simulators used in the examples so far, real sensors and actuators could be used.

A second HMI could be added to the configuration which could display weather data – measured locally or

downloaded from the internet.

Instead of the web server implemented by the organelle www_hmtl, the organelle mqtt could be added to the vivid,

by this adding the functionality to publish metabolics and genes to an MQTT broker. The Face of the organelle mqtt

is almost identical to the one of www_html, allowing configuration without programming knowhow.

Using the available interoperability layer (C and .NET), it is possible to integrate the ViViVerse into other software

like MS Office or MatLab.

 1 Vivids and Organelles

 31

9 Appendix B: Linux

In chapter 8, we have seen a lot of screenshots, mostly taken from the vvv_biotope host program (the Faces are not

tied to the host program and can be reused). This software is based on MFC and thus cannot be used on Linux and

other platforms.

9.1 ncurses

For Linux, the ncurses library has been used to create the vvv_console host program and Faces. The graphical

capabilities of this approach are very limited though.

Figure 27 The vvv_console host program and the Demiurg Face.

One huge advantage is the low bandwidth needed for remote support via SSH.

9.2 Other visual frameworks

Using Qt for a platform independent take on the implementation of Faces and Visages has been considered but

discarded because of the delicate nature of the Qt licensing policy. Thus, Qt Faces have not yet been implemented.

If Qt shall be used for Visages, the vvv_qt package supports their development. It has already been used in several

projects.

Figure 28 A Visage for the Thermostat application based on Qt. It can run on Linux and Windows.

Other possibilities include the use of HTML or .NET based frameworks, which have not been implemented yet.

https://www.qt.io/

 1 Vivids and Organelles

 32

10 Appendix C: The ViViVerse dictionary

Organelle

Organelles are the building blocks of the ViViVerse. The Pheno Organelles provide the actual functionality to the
real world. The Core Organelles are present in each Vivid and create the Pheno Organelles and manage their
Symbioses.

Biotic

Biotics are the components of the functionality provided in the ViViVerse: Commands, Metabolics and Genes.

Donor

A Donor is a Symbiont which provides Biotics to others.

Acceptor

An Acceptor is a Symbiont which uses the Biotics provided by a Donor.

Symbiosis

A Symbiosis is the relationship between a Donor and an Acceptor. If they are in the same Vivid, the Symbiosis is
endoviv. If they are in different Vivids, the Symbiosis is ectoviv.

Dendron

The Dendron links Vivids and enables Symbioses across the whole ViViVerse.

Demiurg

The Demiurg is the generic Organelle factory. It is one of the three Core Organelles present in each Vivid.

Agora

The Agora is the marketplace where Symbionts register and find each other. It is one of the three Core Organelles
present in each Vivid.

 1 Vivids and Organelles

 33

Chaperone

The Chaperone is responsible for the security within a Vivid by supervising the Dendrons. It is one of the three
Core Organelles present in each Vivid.

Face

Faces are optional HMIs bound to an Organelle. They are displayed as part of the host application.

Taxon

A Taxon is a label which helps classifying Organelles in a structured way.

Class

The Class is the Taxon which defines the category of an Organelle. There are 5 Classes: Bridge, Rebus,
Fanta, Ego, Visage.

Family

The Species is the Taxon which defines a specific implementation of a Family.

Species

The Species is the Taxon which defines a specific implementation of a Family.

Identity

The Identity is the Taxon which identifies a single specimen in the ViViVerse.

Holotaxon

The Holotaxon is a unique combination of a Class, a Family, a Species, and an Identity Taxon.

VVVDNA

The VVVDNA holds the information which is used to synthesise a Vivid and its Organelles.

Vivid

The Vivid contains the Core Organelles, Dendrons and Pheno Organelles. It is the smallest fully operational unit
in the ViViVerse.

ViViVerse

The ViViVerse is the sum of all Vivids and the Symbioses between them.

 1 Vivids and Organelles

 34

11 Appendix D: C++ Class diagram

The following diagram shows the main classes of the ViViVerse framework and their relationships.

